Decoding epithelial regeneration in the cornea: multi-omic analysis reveals cellular plasticity as central mechanism
Feret N, Megido AC, Kuony A, Marangoni P, Fichter L, Garcia Llorens S, Attina A, Nhiri N, Jacquet E, Vialaret J, Daien V, David A, Hirtz C, Loulier K, Klein OD, Michon F. Decoding epithelial regeneration in the cornea: multi-omic analysis reveals cellular plasticity as central mechanism. Cell Mol Biol Lett. 2025 Nov 2;30(1):131. doi: 10.1186/s11658-025-00804-9. PMID: 41177882; PMCID: PMC12579813.
Background: Rapid and efficient epithelial regeneration is fundamental for tissue homeostasis and proper function. As the outermost ocular structure, the cornea is transparent, multilayered, and vital for clear vision. Due to its exposed position, the cornea frequently undergoes various forms of injury affecting either the epithelium itself or its surrounding microenvironment, including corneal innervation and the tear film. Corneal abrasion, occurring commonly through trauma or as part of refractive surgical procedures, is typically viewed as a minor event since it usually resolves rapidly. Consequently, the cornea serves as an excellent model for studying epithelial wound healing. However, complications such as persistent epithelial defects or corneal opacity can develop, underscoring critical gaps in understanding the underlying molecular mechanisms. Methods: Utilizing a unilateral corneal abrasion mouse model, we conducted a comprehensive multi-omics analysis, integrating transcriptomics, proteomics, and epitranscriptomics, to dissect the dynamic molecular responses post-injury in both wounded and contralateral tissues. To elucidate the role of the tear film, we performed additional studies involving lacrimal gland ablation combined with corneal injury. We applied RNA sequencing to profile transcriptomic changes in corneal and lacrimal gland tissues, and mass spectrometry to study tear proteomics and epitranscriptomic modifications. Results: We revealed a major modulation of the cornea transcriptome after abrasion, suggesting a regulation of pathways including JAK-STAT, Wnt and TGF-β, and a reduction of nucleoside modifications. The lacrimal gland transcriptome and tears proteome were also significantly affected. Plus, we highlighted a bilateralization, both in the cornea transcriptome and tears proteome. In the tear-deficient conditions, the wound closure rate and molecular responses were altered, and the bilateralization was impacted, with an increased matrix remodeling and a modulation of keratins expression. Conclusions: Our multi-omics analyses revealed extensive epithelial cellular plasticity as a key mechanism driving rapid wound closure, characterized by profound remodeling of transcriptional networks and RNA modifications. Importantly, we uncovered a previously underappreciated role of the lacrimal gland and tear film in mediating bilateral molecular responses following unilateral injury, emphasizing their pivotal roles in tissue regeneration. Additionally, we identified novel regulatory roles for RNA methylation events and critical signaling pathways implicated in epithelial healing.

